PERFORMANCE OF RECYCLED MATERIALS FOR ASPHALT SURFACES: US EXPERIENCE

REBECCA S. MCDANIEL
ABPV MEETING
FORTALEZA, BRAZIL
3 OCTOBER, 2012

OUTLINE

- Introduction
- Current US Practices
- Best Practices
- Performance
- Cost Savings
- Conclusion

RECLAIMED ASPHALT PAVEMENT (RAP)

- In the USA recycling began over 40 years ago because of:
 - Oil embargo shortages and high prices
 - Environmental concerns
 - Development of milling machines

MILLING

- Removes old/distressed pavement
- Improves smoothness
- Eliminates costly shoulder work
- Maintains drainage features, curbs, overhead clearance
- Valuable rehabilitation option

TYPICAL ASPHALT MIX

- 95% aggregate
- 5% asphalt binder

Reusing:

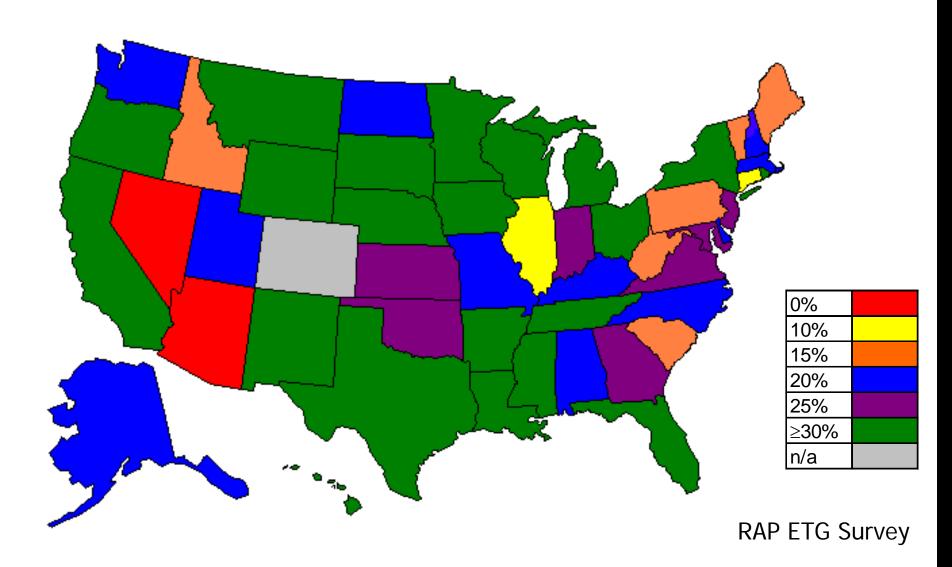
- Reduces need to quarry more aggregate
 - Increasingly difficult to open a new pit or quarry
- Reduces energy/costs to produce, process, transport aggregate
- Reduces asphalt demand

TODAY IN THE USA

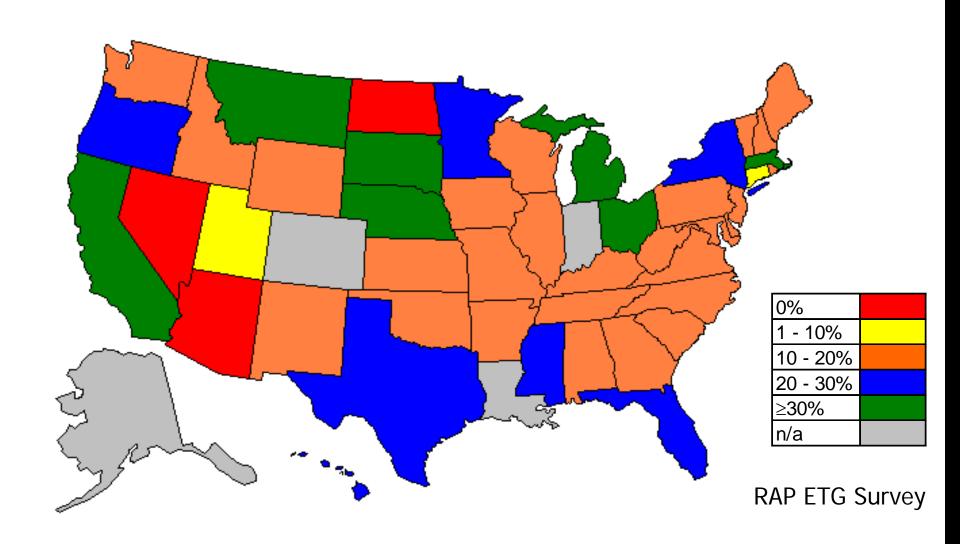
- Asphalt pavement is the most widely recycled material
- 100 million tons reclaimed annually
- 95% is reused or recycled
- \$1.8 billion in savings
- Reduces demand for new aggregates and binder and the energy to produce them
- Strong incentives to use more RAP in more mixes economic and environmental

CURRENT US GUIDELINES

- Adjust grade of binder added to account for the hard, oxidized binder in the RAP
 - 0 to 15% RAP, no binder grade change
 - 16-25% RAP, decrease virgin binder grade
 - Over 25% RAP, test RAP binder to determine appropriate virgin grade (or allowable RAP content)
- Percentage by weight of RAP in the mixture.
- Based on non-fractionated mixes with about 5% binder in RAP and new mix.


50 US STATES

Every state is different!


 National specifications are guidelines, not requirements

 States have adapted the guidelines to suit their methods, perceptions and experience.

BASE MIXES - SPECIFICATIONS IN 2009

BASE MIXES -- AVERAGE USE

WHY AREN'T CONTRACTORS USING ALL THE RAP THEY CAN?

- Guidelines require use of softer binder for high RAP contents.
 - May not be readily available
 - May be more expensive
 - May be harder to compact
- Takes more attention to detail.

SURFACE MIXES

- Typically specifications allow lower RAP contents because of:
 - Friction of unknown aggregate types
 - Potential for cracking of stiffened mixes
- Thinner lifts have less overall aggregate demand than intermediate and base mixes
- But, they are more frequently replaced
- Potential big impact by using more RAP in surfaces

CHANGES OCCURRING IN US PRACTICE

- States are moving to higher RAP contents in more mixtures
- More states are changing to expressing RAP content in terms of percent of RAP binder that is replacing new binder
- More interest in recycling asphalt shingles
- More contractors are splitting the RAP into different size fractions, called fractionating

FRAP Fractionated RAP

RAS = RECYCLED ASPHALT SHINGLES

- Asphalt shingles can have very high binder contents, as high as 30%
 - Greatly reduces demand for new binder
 - Contain hard, angular fine aggregate and fibers
- But, shingle binder is very stiff (oxidized) so there is concern about cracking
- So, allowable shingle content is about 20-25% as high as allowable RAP content

RAP BINDER REPLACEMENT

where A = binder content in RAP, %

B = RAP content in mixture, %

C = binder content in shingles, %

D = shingle content in mixture, %

E = total binder content in mixture, %

WHAT WE HAVE LEARNED

- High RAP contents can work can perform well –
 if properly designed, produced and constructed.
- Start with good mix design that accounts for the RAP.
- But, need attention to detail during construction.

SOME KEYS TO SUCCESS

Processing the RAP

Stockpiling the RAP

Control during production

PROPER PROCESSING OF RAP BEGINS WITH REMOVAL

When possible:

Mill layers separately

 So you can reuse high quality aggregates in new surface mixes

Keep different projects and different layers separate

PROCESSING RAP

- Mixed RAP can be variable
 - Crushing/Screening to break up clumps
 - Processing can improve uniformity
 - Uniformity is essential to meet specifications

In Composite Pile

After Processing

CRUSHING AND SCREENING

FRACTIONATED RAP = CRUSHED AND SCREENED INTO DIFFERENT SIZES

- Improves uniformity (remixes)
- Allows use of different sizes to meet mix design
- Better control of gradation (and binder content)

STOCKPILING PRACTICES

- Avoid segregation
- Avoid contamination
- Reduce stockpile moisture

 Test the RAP stockpiles regularly – know what is in your stockpiles!

SEGREGATION

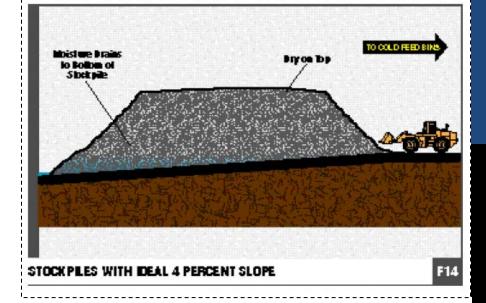
- Follow normal stockpiling techniques to minimize segregation
 - Building
 - Managing
 - Pulling material

CAUSES OF CONTAMINATION

- Stockpiles too close together can intermix

 keep separated
- Putting wrong material in stockpile label clearly
- "Dirty" stockpile pave stockpile area
- Tracking mud into pile install drainage to help keep area dry, keep mud off loader tires

Not Good


REDUCE STOCKPILE MOISTURE

- Expect to lose 12% production capacity for every percent stockpile moisture above 2%
- Reduce fuel consumption and drying costs by keeping your materials dry
- Lower moisture leads to increased production capacity
- Lower maintenance and fuel costs for loaders
- Lower paving costs

How to Reduce Moisture

- Paved stockpile area
- Sloped stockpile area
- Covered stockpiles

BENEFITS OF SLOPED STOCKPILE

- Moisture drains to bottom of pile
- On slope, moisture drains away
- Slope grade 3 to 4°
- Pick off high side of pile
- Face slope towards sun to more drying
- Can reduce moisture 2% overall

COVERED STOCKPILES

Still rare but useful, especially in high moisture areas

PLANT CONTROL FOR RAP MIXES

- Control plant inputs (cold feeds)
- Control material variability
- Follow-up Quality Control test results
- Watch drum flighting maintain protective RAP veil
- Avoid overheating mix
- Normal production care and attention

SUMMARY OF RAP BEST PRACTICES

- Mill layers separately when you can
- Process RAP and stockpile properly
- Fractionate RAP
- Avoid contamination
- Keep the RAP dry –paved and sloped area, covered stockpile
- Test the RAP stockpiles regularly
- Watch plant production

PERFORMANCE: RAP vs. VIRGIN

- Randy West, NCAT
- Using data from Long Term Pavement Performance (LTPP) 20-year study
 - Rutting, mm
 - Roughness (IRI), m/km
 - Fatigue cracking, m²
 - Transverse cracking, # per section
 - Longitudinal cracking, m
- 340 comparisons

PERFORMANCE OF RAP MIXES

- Pavements using ≥ 30% RAP perform equal to or better than virgin pavements in *most* cases
- Somewhat more transverse and fatigue cracking in some pavements with RAP compared to pavements with all virgin materials
- Differences in cracking for several locations may have been due to lower asphalt contents and/or higher dust contents (poor mix design)

COST/BENEFITS OF RAP

- Milling or Pavement Salvage Costs
 - Mill, haul & stockpile: ≈\$6.50/ ton
 - Excavate, haul & stockpile: ≈ \$7.00/ton
 - Reprocessing: ≈ \$5.00/ton
- Virgin Material Costs
 - Coarse Aggregate ≈ \$12.00/t
 - Fine Aggregate ≈ \$8.00
 - PG Binder $\approx 450.00 (when this analysis was done)
 - Ton of Virgin Mix = \$50 for Intermediate, \$60 for surface course

Don Brock, ASTEC

COST SAVINGS USING RAP FOR A TYPICAL 19.0 MM INTERMEDIATE

% RAP	Per ton Savings \$ (materials only)	Notes
0	0	
15	\$3.40	
25	\$5.50	Does not include premium PG58-28
40	\$6.80	Includes premium PG58-28

25% RAP in an intermediate 19.0mm HMA will save approximately 11% per ton.

COST SAVINGS USING RAP FOR A TYPICAL 9.5 MM SURFACE

% RAP	Per ton Savings \$ (materials only)	Notes
0	\$0	
15	\$3.40	
25	\$5.50	Does not include premium PG58-28
40	\$6.80	Includes premium PG58-28

25% RAP in a Surface 9.5 mm HMA will save approximately 9% per ton.

Another Way to Look at Savings

- One medium sized US paving contractor uses 900,000 tons RAP per year
- That is equivalent to 1,460,000 gallons of gas
- Which is enough to fuel 1,650 big Ford Expeditions

CONCLUSIONS

RAP has long history of successful use.

Asphalt recycling is sustainable.

Asphalt recycling is economical.

Asphalt recycling works!

OBRIGADA!

Rebecca S. McDaniel
Technical Director
North Central Superpave Center
Purdue University
West Lafayette, IN
765/463-2317 ext 226
rsmcdani@purdue.edu
https://engineering.purdue.edu/NCSC